Vol. 38 No. 2 (2023)
Research Articles

Social Media Use and Digital Competence as Predictors of Students' Familiarity with MOOCs

Ana Stojanov
Univesity of Otago
Ben Daniel
University of Otago
Nikolina Kenig
Ss Cyril and Methodius University
Nadine Hoskins
University of Otago

Published 2023-12-21

How to Cite

Stojanov, A., Daniel, B., Kenig, N., & Hoskins, N. (2023). Social Media Use and Digital Competence as Predictors of Students’ Familiarity with MOOCs. International Journal of E-Learning & Distance Education Revue Internationale Du E-Learning Et La Formation à Distance, 38(2). https://doi.org/10.55667/10.55667/ijede.2023.v38.i2.1280


Massive Open Online Courses (MOOCs) have been disruptive advancements in online learning and teaching in the last decade. We argue that discourses on the value and limitations of MOOCs have largely taken for granted that students are aware of the existence of MOOCs. In the current research, we examined students' awareness of MOOCs and explored digital competence as a potential predictor of such awareness, hypothesising that the effect may be exerted via social media application use. We deployed a questionnaire (Study 1: N = 152, Study 2: N = 158) to measure students' levels of digital competence, their use of social media applications, and their awareness of MOOCs. We also examined students' motivations for enrolling or not enrolling in MOOCs. The results supported our hypothesis that low digital competence is a predictor of low MOOC awareness, but the results from the mediation analysis were not conclusive.

Keywords: digital competence, higher education, MOOC, MOOC awareness, motivation, self-efficacy, social media, social media use benefits, students

Utilisation des médias sociaux et compétence numérique comme facteurs prédictifs de la familiarité des étudiants avec les MOOCs

Résumé : Les cours en ligne ouverts et massifs (MOOC) ont constitué une avancée majeure dans l'apprentissage et l'enseignement en ligne au cours de la dernière décennie. Nous avançons l’idée que les discours sur la pertinence et les limites des MOOC ont largement pris pour acquis le fait que les étudiants étaient au courant de l'existence des MOOC. Dans la présente recherche, nous avons examiné la sensibilisation des étudiants aux MOOC et exploré la compétence numérique en tant que prédicteur potentiel de cette sensibilisation, en émettant l'hypothèse que l'effet peut être exercé par l'utilisation d'applications de médias sociaux. Nous avons diffusé un questionnaire (étude 1 N = 152, étude 2 N = 158) pour mesurer les niveaux de compétence numérique des étudiants, leur utilisation des applications de médias sociaux et leur connaissance des MOOC. Nous avons également examiné les motivations des étudiants pour s'inscrire ou non à des MOOC. Les résultats confirment notre hypothèse selon laquelle une faible compétence numérique est un facteur prédictif d'une faible connaissance des MOOC, mais les résultats de l'analyse de médiation ne sont pas concluants.

Mots-clés : compétence numérique, enseignement supérieur, MOOC, connaissance des MOOC, motivation, auto-efficacité, médias sociaux, avantages de l'utilisation des médias sociaux, étudiants


  1. Aboshady, O. A., Radwan, A. E., Eltaweel, A. R., Azzam, A., Aboelnaga, A. A., Hashem, H. A., Darwish, S. Y., Salah, R., Kotb, O. N., Afifi, A. M., Noaman, A. M., Salem, D. S., & Hassouna, A. (2015). Perception and use of massive open online courses among medical students in a developing country: multicentre cross-sectional study. BMJ Open, 5(1), e006804. https://doi.org/10.1136/BMJOPEN-2014-006804
  2. Adebayo, E., A., & Babalola, Y. T. (2020). Awareness and intention to use massive open online courses by law students in Osun State, Nigeria. Information Impact: Journal of Information and Knowledge Management, 11(4), 37–47. https://dx.doi.org/10.4314/iijikm.v11i4.4
  3. Alario-Hoyos, C., Pérez-Sanagustín, M., Delgado-Kloos, C., Parada, G. H. A., Muñoz-Organero, M., & Rodríguez-de-las-Heras, A. (2013). Analysing the impact of built-in and external social tools in a MOOC on educational technologies. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8095 LNCS, 5–18. https://doi.org/10.1007/978-3-642-40814-4_2
  4. Alenezi, W., & Brinthaupt, T. M. (2022). The use of social media as a tool for learning: Perspectives of students in the Faculty of Education at Kuwait University. Contemporary Educational Technology, 14(1), ep340. https://doi.org/10.30935/cedtech/11476
  5. Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputation. Computers & Education, 80, 28–38. https://doi.org/10.1016/J.COMPEDU.2014.08.006
  6. Alwreikat, A., Zaid, M. K. A., & Shehata, A. (2021). Determinants of Facebook use among students and its impact on collaborative learning. Information Development, 38(4), 641–657. https://doi.org/10.1177/02666669211005819
  7. Aparicio, M., Oliveira, T., Bacao, F., & Painho, M. (2019). Gamification: A key determinant of massive open online course (MOOC) success. Information & Management, 56(1), 39–54. https://doi.org/10.1016/J.IM.2018.06.003
  8. Bagci, S. C., Cameron, L., Turner, R. N., Morais, C., Carby, A., Ndhlovu, M., & Leney, A. (2019). Cross-ethnic friendship self-efficacy: A new predictor of cross-ethnic friendships among children. Group Processes & Intergroup Relations, 23(7), 1049–1065. https://doi.org/10.1177/1368430219879219
  9. Bakogianni, E., Tsitouridou, M., & Kyridis, A. (2020). MOOCs in teachers' professional development: examining teacher readiness. Academia, 0(18), 9–40. https://doi.org/10.26220/ACA.3205
  10. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191
  11. Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147. https://doi.org/10.1037/0003-066X.37.2.122
  12. Barak, M., Watted, A., & Haick, H. (2016, March). Motivation to learn in massive open online courses: Examining aspects of language and social engagement. Computers & Education, 94, 49–60. https://doi.org/10.1016/J.COMPEDU.2015.11.010
  13. Bezerra, L. N. M., & Silva, M. T. (2017). A review of literature on the reasons that cause the high dropout rates in the MOOCS. Espacios, 38(5), 11. https://www.revistaespacios.com/a17v38n05/a17v38n05p11.pdf
  14. Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G., Ho, A., & Seaton, T. (2013). Studying learning in the Worldwide Classroom Research into edX's First MOOC. Research & Practice in Assessment, 8, 13–25. https://www.rpajournal.com/dev/wp-content/uploads/2013/05/SF2.pdf
  15. Caraway, K., Tucker, C. M., Reinke, W. M., & Hall, C. (2003, May 27). Self-efficacy, goal orientation, and fear of failure as predictors of school engagement in high school students. Psychology in the Schools, 40(4), 417–427. https://doi.org/10.1002/PITS.10092
  16. Carlisle, S., Ivanov, S., & Dijkmans, C. (2023). The digital skills divide: Evidence from the European tourism industry. Journal of Tourism Futures, 9(2), 240–266. https://doi.org/10.1108/jtf-07-2020-0114
  17. Castaño-Muñoz, J., Kreijns, K., Kalz, M., & Punie, Y. (2016, October 18). Does digital competence and occupational setting influence MOOC participation? Evidence from a cross-course survey. Journal of Computing in Higher Education, 29(1), 28–46. https://doi.org/10.1007/s12528-016-9123-z
  18. Chang, S. L., & Kabilan, M. K. (2022). Using social media as e-Portfolios to support learning in higher education: A literature analysis. Journal of Computing in Higher Education. https://doi.org/10.1007/s12528-022-09344-z
  19. Chen, Y. (2014). Investigating MOOCs through blog mining. The International Review of Research in Open and Distributed Learning, 15(2), 85–106. https://doi.org/10.19173/IRRODL.V15I2.1695
  20. Chen, Y., & Zhang, M. (2017, May). MOOC student dropout: Pattern and prevention. ACM TUR-C '17: Proceedings of the ACM Turing 50th Celebration Conference, China. https://doi.org/10.1145/3063955.3063959
  21. Coffrin, C., Corrin, L., De Barba, P., & Kennedy, G. (2014, March). Visualising patterns of student engagement and performance in MOOCs. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge. https://doi.org/10.1145/2567574.2567586
  22. Conole, G. (2016, February 25). Designing effective MOOCs. Educational Media International, 52(4), 239–252. https://doi.org/10.1080/09523987.2015.1125989
  23. Costello, E., Binesh, N., Brown, M., Zhang, J., Giolla-Mhichíl, M. N., Donlon, E., & Lynn, T. (2016). Social media #MOOC mentions: Lessons for MOOC mentions from analysis of Twitter data. In S. Barker, S. Dawson, A. Pardo, & C. Colvin (Eds.), Show Me the Learning. Proceedings ASCILITE 2016, Adelaide, Australia (pp. 157–162). https://2016conference.ascilite.org/wp-content/uploads/ASCILITE-2016-full-proceedings-Updated-1512.pdf
  24. de Moura, V. F., de Souza, C. A., & Viana, A. B. N. (2021, February 1). The use of massive open online courses (MOOCs) in blended learning courses and the functional value perceived by students. Computers & Education, 161(2), 104077. http://dx.doi.org/10.1016/j.compedu.2020.104077
  25. DeAndrea, D. C., Ellison, N. B., LaRose, R., Steinfield, C., & Fiore, A. (2012, January). Serious social media: On the use of social media for improving students' adjustment to college. The Internet and Higher Education, 15(1), 15–23. https://doi.org/10.1016/J.IHEDUC.2011.05.009
  26. Dhanani, J., Chavda, N., Patel, N., & Tandel, K. (2016). Awareness and utilisation of massive open online course (MOOC) and video series as continuous learning tools for faculties. International Journal of Medical Science and Public Health, 5(8), 1540. https://doi.org/10.5455/IJMSPH.2016.29102015242
  27. El-Nabahany, U., Daniel, B. K., Ismail, M., & Rai, I. (2023). The affordance and challenges of implementing a massive open online course in Kiswahili in East Africa. In Higher Education in Sub-Saharan Africa in the 21st Century: Pedagogy, Research and Community-Engagement (pp. 279–295). Springer Nature Singapore.
  28. Eriksson, T., Adawi, T., & Stöhr, C. (2016, November 24). "Time is the bottleneck": a qualitative study exploring why learners drop out of MOOCs. Journal of Computing in Higher Education, 2016, 29(1), 133–146. https://doi.org/10.1007/S12528-016-9127-8
  29. Fini, A. (2009). The technological dimension of a massive open online course: The case of the CCK08 course tools. International Review of Research in Open and Distance Learning, 10(5 SPL.ISS.). https://doi.org/10.19173/IRRODL.V10I5.643
  30. Freiling, I., Krause, N. M., Scheufele, D. A., & Brossard, D. (2023). Believing and sharing misinformation, fact-checks, and accurate information on social media: The role of anxiety during COVID-19. New Media & Society, 25(1), 141–162. https://doi.org/10.1177/14614448211011451
  31. Fritz, M. S., & MacKinnon, D. P. (2007, March). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233–239. https://doi.org/10.1111/j.1467-9280.2007.01882.x
  32. Garcia, K. R., Rodrigues, L., Pereira, L., Busse, G., Irbe, M., Almada, M., Christensen, C., Midão, L., Dias, I., Heery, D., Hardy, R., Quarta, B., Poulain, M. M., Bertram, M., Karnikowski, M., & Costa, E. (2021). Improving the digital skills of older adults in a COVID-19 pandemic environment. Educational Gerontology, 47(5), 196–206. https://doi.org/10.1080/03601277.2021.1905216
  33. Gilson, T. A., Show, G. M., & Feltz, D. L. (2012, April 18). Self-efficacy and athletic squat performance: Positive or negative influences at the within- and between-levels of analysis. Journal of Applied Social Psychology, 42(6), 1467–1485. https://doi.org/10.1111/J.1559-1816.2012.00908.X
  34. González, A., Blanco-Piñeiro, P., & Díaz-Pereira, M. P. (2017). Music performance anxiety: Exploring structural relations with self-efficacy, boost, and self-rated performance. Psychology of Music, 46(6), 831–847. https://doi.org/10.1177/0305735617727822
  35. Halpern, D., & Gibbs, J. (2013). Social media as a catalyst for online deliberation? Exploring the affordances of Facebook and YouTube for political expression. Computers in Human Behavior, 29(3), 1159–1168. http://dx.doi.org/10.1016/j.chb.2012.10.008
  36. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press.
  37. He, T., Huang, Q., Yu, X., & Li, S. (2021). Exploring students' digital informal learning: The roles of digital competence and DTPB factors. Behaviour & Information Technology. https://doi.org/10.1080/0144929X.2020.1752800
  38. Heidari, E., Mehrvarz, M., Marzooghi, R., & Stoyanov, S. (2021, August). The role of digital informal learning in the relationship between students' digital competence and academic engagement during the COVID-19 pandemic. Journal of Computer Assisted Learning, 37(4), 1154–1166. https://doi.org/10.1111/JCAL.12553
  39. Henderikx, M. A., Kreijns, K., & Kalz, M. (2017). Refining success and dropout in massive open online courses based on the intention–behavior gap. Distance Education, 38(3), 353–368. https://doi.org/10.1080/01587919.2017.1369006
  40. Hew, K. F., & Cheung, W. S. (2014, June). Students' and instructors' use of massive open online courses (MOOCs): Motivations and challenges. Educational Research Review, 12, 45–58. https://doi.org/10.1016/J.EDUREV.2014.05.001
  41. Hone, K. S., & El-Said, G. R. (2016). Exploring the factors affecting MOOC retention: A survey study. Computers & Education, 98, 157–168. https://doi.org/10.1016/j.compedu.2016.03.016
  42. Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review, 17, 63–84. https://doi.org/10.1016/J.EDUREV.2015.11.002
  43. Jozani, M., Ayaburi, E., Ko, M., & Choo, K.-K. R. (2020, June). Privacy concerns and benefits of engagement with social media-enabled apps: A privacy calculus perspective. Computers in Human Behavior, 107, 106260. https://doi.org/10.1016/j.chb.2020.106260
  44. Kabilan, M. K., Ahmad, N., & Abidin, M. J. Z. (2010, December). Facebook: An online environment for learning of English in institutions of higher education? The Internet and Higher Education, 13(4), 179–187. https://doi.org/10.1016/J.IHEDUC.2010.07.003
  45. Kasunic, A., Hammer, J., Kraut, R., Massimi, M., & Ogan, A. (2016, April). A preliminary look at MOOC-associated Facebook groups: Prevalence, geographic representation, and homophily. L@S 2016: Proceedings of the 3rd 2016 ACM Conference on Learning at Scale, 205–208. https://doi.org/10.1145/2876034.2893415
  46. Kerrison, M. A., Leong Son, J., Grainger, B., & Tutty, C. (2016, May 1). Massive open online courses (MOOCs) and their role in promoting continuing education. International Journal of Continuing Education and Lifelong Learning, 8(2), 106–127.
  47. Khalil, H., & Ebner, M. (2014). MOOCs completion rates and possible methods to improve retention: A literature review. In Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, (pp. 1236–1244). Chesapeak, VA.
  48. King, I., & Lee, W. I. (2022). Advanced technology empowering MOOCs. In A decade of MOOCs and beyond: Platforms, policies, pedagogy, technology, and ecosystems with an emphasis on greater China (pp. 101–115). Springer International Publishing.
  49. Kizilcec, R. F., & Schneider, E. (2015, March 10). Motivation as a lens to understand online learners: Toward data-driven design with the OLEI scale. ACM Transactions on Computer-Human Interaction (TOCHI), 22(2), 1–24. https://doi.org/10.1145/2699735
  50. Kop, R., Fournier, H., & Mak, J. S. F. (2011). A pedagogy of abundance or a pedagogy to support human beings? Participant support on massive open online courses. International Review of Research in Open and Distance Learning, 12(7), 74–93. https://doi.org/10.19173/IRRODL.V12I7.1041
  51. Kővári, E., & Bak, G. (2021). University students' online social presence and digital competencies in the COVID-19 virus situation. In Bridges and Mediation in Higher Distance Education Second International Workshop, HELMeTO 2020, Bari, Italy. https://doi.org/10.1007/978-3-030-67435-9_13
  52. Krishnan, B. C., Netemeyer, R. G., & Boles, J. S. (2002). Self-efficacy, competitiveness, and effort as antecedents of salesperson performance. Journal of Personal Selling and Sales Management, 22(4), 285–295. https://www.jstor.org/stable/40471894
  53. Kumar, P., & Gruzd, A. (2023). Social media for informal learning: a case of #Twitterstorians. Proceedings of the 52nd Hawaii International Conference on Systems Sciences. https://dx.doi.org/10.32920/ryerson.14636658.v1
  54. Kundu, A., & Bej, T. (2020). Perceptions of MOOCs among Indian State University students and teachers. Journal of Applied Research in Higher Education, 12(5), 1095–1115. https://doi.org/10.1108/jarhe-08-2019-0224
  55. Lambert, S. R. (2020, February). Do MOOCs contribute to student equity and social inclusion? A systematic review 2014–18. Computers & Education, 145, 103693. https://doi.org/10.1016/j.compedu.2019.103693
  56. Lee, S.-B. (2018). Exploring a relationship between students' interpreting self-efficacy and performance: Triangulating data on interpreter performance assessment. The Interpreter and Translator Trainer, 12(2), 166–187. https://doi.org/10.1080/1750399X.2017.1359763
  57. Li, B., Wang, X., & Tan, S. C. (2018, August). What makes MOOC users persist in completing MOOCs? A perspective from network externalities and human factors. Computers in Human Behavior, 85, 385–395. https://doi.org/10.1016/J.CHB.2018.04.028
  58. Linnenbrink, E. A., & Pintrich, P. R. (2003). The role of self-efficacy beliefs in student engagement and learning in the classroom. Reading & Writing Quarterly: Overcoming Learning Difficulties, 19(2), 119–137. https://doi.org/10.1080/10573560308223
  59. Liu, M., Kang, J., Cao, M., Lim, M., Ko, Y., Myers, R., & Weiss, A. S. (2014). Understanding MOOCs as an emerging online learning tool: Perspectives from the students. American Journal of Distance Education, 28(3), 147–159. https://doi.org/10.1080/08923647.2014.926145
  60. Liu, M., Kang, J., McKelroy, E., Harron, J., & Liu, S. (2016). Investigating students' interactions with discussion forums, Facebook, and Twitter in a MOOC and their perceptions. In B. H. Khan (Ed.), Revolutionizing modern education through meaningful e-learning implementation, (pp. 18–41). IGI Global. https://doi.org/10.4018/978-1-5225-0466-5.CH002
  61. Liu, M., McKelroy, E., Kang, J., Harron, J., & Liu, S. (2016). Examining the use of Facebook and Twitter as an additional social space in a MOOC. American Journal of Distance Education, 30(1), 14–26. https://doi.org/10.1080/08923647.2016.1120584
  62. Liyanagunawardena, T. R., Williams, S. A., & Adams, A. A. (2013, May). The impact and reach of MOOCs: A developing countries' perspective. eLearning Papers, 33. https://centaur.reading.ac.uk/32452/1/In-depth_33_1.pdf
  63. López-Meneses, E., Sirignano, F. M., Vázquez-Cano, E., & Ramírez-Hurtado, J. M. (2020). University students' digital competence in three areas of the DigCom 2.1 model: A comparative study at three European universities. Australasian Journal of Educational Technology, 36(3), 69–88. https://doi.org/10.14742/AJET.5583
  64. Martín, S. C., González, M. C., & Peñalvo, F. J. G. (2019). Digital competence of early childhood education teachers: Attitude, knowledge and use of ICT. European Journal of Teacher Education 43(2), 210–223. https://doi.org/10.1080/02619768.2019.1681393
  65. Mehrvarz, M., Heidari, E., Farrokhnia, M., & Noroozi, O. (2021, July). The mediating role of digital informal learning in the relationship between students’ digital competence and their academic performance. Computers & Education, 167, 104184. https://doi.org/10.1016/j.compedu.2021.104184
  66. Moore, R. L., & Wang, C. (2021). Influence of learner motivational dispositions on MOOC completion. Journal of Computing in Higher Education, 33(1), 121–134. https://doi.org/10.1007/s12528-020-09258-8
  67. Mutawa, A. M. (2023, March 28). Perspective chapter: MOOCS at higher education: Current state and future trends. IntechOpen. http://dx.doi.org/10.5772/intechopen.1001367
  68. Muzafarova, T., & Kaya, E. (2014). Survey of awareness of massive open online courses (MOOC) – A case of International Black Sea University Students, Georgia. Journal of Education, 3(2), 15–19. https://jebs.ibsu.edu.ge/jms/index.php/je/article/view/100
  69. North, S. M., Richardson, R., & North, M. M. (2014). To adapt MOOCS, or not? That is no longer the question. Universal Journal of Educational Research, 2(1), 69–72. https://doi.org/10.13189/ujer.2014.020108
  70. Onah, D. F. O., Sinclair, J. & Boyatt, R. (2014) Dropout rates of massive open online courses: Behavioural patterns. In Proceedings of the 6th International Conference on Education and New Learning Technologies, Barcelona, Spain (pp. 7–9) Published in EDULEARN14 Proceedings (pp. 5825–5834). ISBN 9788461705573. ISSN 2340-1117
  71. Ouweneel, E., Schaufeli, W. B., & Le Blanc, P. M. (2013, July). Believe, and you will achieve changes over time in self-efficacy, engagement, and performance. Applied Psychology: Health and Well-Being, 5(2), 225–247. https://doi.org/10.1111/APHW.12008
  72. Petronzi, D., & Hadi, M. (2016, December). Exploring the factors associated with MOOC engagement, retention and the wider benefits for learners. European Journal of Open, Distance and E-Learning, 19(2), 112–129. https://doi.org/10.1515/EURODL-2016-0011
  73. Porter, S. (2015). To MOOC or not to MOOC: How can online learning help to build the future of higher education? Chandos Publishing. ISBN: 978-0081000489
  74. R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL https://www.R-project.org
  75. Reich, J., & Ruipérez-Valiente, J. A. (2019, January 11). The MOOC pivot. Science, 363(6423), 130–131. https://doi.org/10.1126/science.aav7958
  76. Rhoads, R. A. (2015, October 30). MOOCs, high technology, and higher learning. John Hopkins University Press. ISBN: 978-1421417790
  77. Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students' academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138(2), 353–387. https://doi.org/10.1037/A0026838
  78. Rodriguez, C. (2012). MOOCs and the AI-Stanford like courses: Two successful and distinct course formats for massive open online courses. The European Journal of Open, Distance and E-Learning, 15.
  79. Romero-Rodriguez, L. M., Ramirez-Montoya, M. S., & Gonzalez, J. R. V. (2020). Incidence of digital competences in the completion rates of MOOCs: Case study on energy sustainability courses. IEEE Transactions on Education, 63(3), 183–189. https://doi.org/10.1109/te.2020.2969487
  80. Rosseel, Y. (2012, November). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. http://dx.doi.org/10.18637/jss.v048.i02
  81. Selwyn, N. (2009). Faceworking: Exploring students' education‐related use of Facebook. Learning Media and Technology, 34(2), 157–174. https://doi.org/10.1080/17439880902923622
  82. Siemens, G., & Downes, S. (2008). Connectivism and connective knowledge. University of Manitoba.
  83. Semenova, T. (2020, May). The role of learners' motivation in MOOC completion. Open Learning: The Journal of Open, Distance and e-Learning, 37. http://dx.doi.org/10.1080/02680513.2020.1766434
  84. Shakya, M., Shrestha, S., & Manandhar, R. (2016). Awareness of MOOC among college students: A study of far western region of Nepal. International Conference on IT4D, Kathmandu. https://www.researchgate.net/publication/306057436_Awareness_of_MOOC_Among_College_Students_A_Study_Of_Far_Western_Region_of_Nepal
  85. Shapiro, H. B., Lee, C. H., Wyman Roth, N. E., Li, K., Çetinkaya-Rundel, M., & Canelas, D. A. (2017, July). Understanding the massive open online course (MOOC) student experience: An examination of attitudes, motivations, and barriers. Computers & Education, 110, 35–50. https://doi.org/10.1016/J.COMPEDU.2017.03.003
  86. Sharma, S. K., Joshi, A., & Sharma, H. (2016, February). A multi-analytical approach to predict the Facebook usage in higher education. Computers in Human Behavior, 55, 340–353. https://doi.org/10.1016/J.CHB.2015.09.020
  87. Shearer, E., & Mitchell, A. (2021, January 12). News use across social media platforms in 2020. E&P. https://www.pewresearch.org/journalism/2021/01/12/news-use-across-social-media-platforms-in-2020/
  88. Sonwalkar, J., & Maheshkar, C. (2015). MOOCs: A massive platform for collaborative learning in globalized way. Journal of Management Research and Analysis, 2(2), 142–149. https://www.jmra.in/article-details/711
  89. Soyemi, O. D., & Babalola, Y. T. (2018, August 6). Awareness and use of massive open online courses among academic librarians in Ogun state, Nigeria. Information Impact: Journal of Information and Knowledge Management, 9(1), 1–11. https://doi.org/10.4314/iijikm.v9i1.1
  90. Terras, M. M., & Ramsay, J. (2015). Massive open online courses (MOOCs): Insights and challenges from a psychological perspective. British Journal of Educational Technology, 46(3), 472–487. https://doi.org/10.1111/bjet.12274
  91. Toker, S., & Baturay, M. H. (2019, March 29). What foresees college students' tendency to use Facebook for diverse educational purposes? International Journal of Educational Technology in Higher Education, 16(1), 1–20. https://doi.org/10.1186/S41239-019-0139-0
  92. Tzafilkou, K., Perifanou, M., & Economides, A. A. (2022, May 16). Development and validation of students' digital competence scale (SDiCoS). International Journal of Educational Technology in Higher Education, 19(1). https://doi.org/10.1186/s41239-022-00330-0
  93. van Deursen, A. J., & van Dijk, J. A. (2019). The first-level digital divide shifts from inequalities in physical access to inequalities in material access. New Media & Society, 21(2), 354–375. https://doi.org/10.1177/1461444818797082
  94. Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/J.1540-5915.2008.00192.X
  95. Vusumuzi, M., & Mfowabo, M. (2023). Opportunities and challenges of adopting MOOCs in Africa: A systematic literature review. In G. Sam (Ed.), Massive open online courses: Current practice and future trends (pp. Ch. 0). IntechOpen. https://doi.org/10.5772/intechopen.1001298
  96. Wang, Y., McKee, M., Torbica, A., & Stuckler, D. (2019, November). Systematic literature review on the spread of health-related misinformation on social media. Social Science & Medicine, 240, 112552. https://doi.org/https://doi.org/10.1016/j.socscimed.2019.112552
  97. Wang, X., Zhang, R., Wang, Z., & Li, T. (2021, April 23). How does digital competence preserve university students' psychological well-being during the pandemic? An investigation from Self-Determined Theory. Frontiers in Psychology, 0, 1252. https://doi.org/10.3389/FPSYG.2021.652594
  98. Wang, W., Zhao, Y., Wu, Y. J., & Goh, M. (2023, June 1). Factors of dropout from MOOCs: A bibliometric review. Library Hi Tech, 41(2), 432–453. https://doi.org/10.1108/lht-06-2022-0306
  99. Watted, A. & Barak, M. (2018, April). Motivating factors of MOOC completers: Comparing between university-affiliated students and general participants. The Internet and Higher Education, 37, 11–20. https://doi.org/10.1016/j.iheduc.2017.12.001
  100. Xing, W., Chen, X., Stein, J., & Marcinkowski, M. (2016, May). Temporal prediction of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization. Computers in Human Behavior, 58, 119–129. https://doi.org/10.1016/J.CHB.2015.12.007
  101. Yousef, A. M. F., & Sumner, T. (2021). Reflections on the last decade of MOOC research. Computer Applications in Engineering Education, 29(4), 648–665. http://dx.doi.org/10.1002/cae.22334
  102. Yu, A. Y., Tian, S. W., Vogel, D., & Chi-Wai Kwok, R. (2010, December). Can learning be virtually boosted? An investigation of online social networking impacts. Computers & Education, 55(4), 1494–1503. https://doi.org/10.1016/J.COMPEDU.2010.06.015
  103. Zhao, Y., Pinto Llorente, A. M., & Sánchez Gómez, M. C. (2021). Digital competence in higher education research: A systematic literature review. Computers and Education, 168. https://doi.org/10.1016%2Fj.compedu.2021.104212