Vol. 31 No. 2 (2016)
Research Articles

An Investigation into Effective Pedagogies in a Flipped Classroom: A Case Study

Minkyoung Kim
Indiana University
Eulho Jung
Boise State University
Amaury de Siqueira
Indiana University
Lesa Huber
Indiana University
Published October 15, 2016
  • flipped classroom,
  • hybrid classroom,
  • instructional design,
  • pedagogy,
  • active learning
How to Cite
Kim, M., Jung, E., de Siqueira, A., & Huber, L. (2016). An Investigation into Effective Pedagogies in a Flipped Classroom: A Case Study. International Journal of E-Learning & Distance Education / Revue Internationale Du E-Learning Et La Formation à Distance, 31(2). Retrieved from https://www.ijede.ca/index.php/jde/article/view/964


The flipped classroom is being increasingly used in a wide range of instructional situations, yet little is known about how to facilitate it. The purpose of this study is to explore what types of learning activities in a flipped classroom are perceived to be the most effective in the achievement of desired course competencies. This case study specifically focused on the classroom lab sessions—the student-centered classroom—rather than online self-learning modules. Employing a case study using a mixed method approach, this research identifies effective pedagogy in facilitating a flipped classroom. Merrill’s (2002) first principles of instruction were used as a research framework. While results show that students engaged in learning activities of demonstration and application, they were barely exposed to higher-order learning activities. That leads to the conclusion that implementing problem-centered instructional activities, accompanied by desirable challenges, is highly advisable to foster deep engagement. Implications and future directions are discussed.


Une investigation sur des pédagogies efficaces dans une salle de classe inversée : Une étude de cas

La classe inversée est de plus en plus utilisée dans un large éventail de situations pédagogiques, mais on en sait peu sur la façon de la faciliter. Le but de cette étude est d'explorer quels types d'activités dans une salle de classe inversée sont perçus comme étant les plus efficaces dans la réalisation des compétences de cours visées. Cette étude de cas a été spécifiquement centrée sur des sessions de laboratoire en classe – classe centrée sur l'étudiant — plutôt que des modules d'auto-apprentissage en ligne. En se servant d’une étude de cas tout en utilisant une approche de méthodes mixtes, cette recherche propose une pédagogie efficace pour faciliter une salle de classe inversée. Les premiers principes d'instruction de Merrill (2002) ont été utilisés comme cadre de référence pour la recherche. Bien que les résultats montrent que les étudiants participaient à des activités d’apprentissage de démonstration et d'application, ils étaient à peine exposés à des activités d'apprentissage d'ordre supérieur. Cela mène à la conclusion que la mise en œuvre d’activités pédagogiques centrées sur les problèmes, accompagnées de défis souhaitables, est hautement recommandée pour favoriser l'engagement profond. Les implications et les orientations futures sont discutées.


  1. Abeysekera, L., & Dawson, P. (2015). Motivation and cognitive load in the flipped classroom: definition, rationale and a call for research. Higher Education Research & Development, 34(1), 1-14.
  2. Andrews, T., Leonard, M., Colgrove, C., & Kalinowski, S. (2011). Active learning not associated with student learning in a random sample of college biology courses. CBE-Life Sciences Education, 10(4), 394-405.
  3. Armstrong, D., Gosling, A., Weinman, J., & Marteau, T. (1997). The place of inter-rater reliability in qualitative research: an empirical study. Sociology, 31(3), 597-606.
  4. Arum, R., Cho, E., Kim, J., & Roksa, J. (2012). Documenting uncertain times: Post-graduate transitions of the 'Academically adrift' cohort. New York: Social Science Research Council.
  5. Berge, Z. L. (1998). Barriers to online teaching in post-secondary institutions: Can policy changes fix it? Online Journal of Distance Learning Administration, 1(2).
  6. Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. International Society for Technology in Education.
  7. Berrett, D. (2012). How ‘flipping’the classroom can improve the traditional lecture. The Chronicle of Higher Education, 12, 1-14.
  8. Bishop, J. L., & Verleger, M. A. (2013). The flipped classroom: A survey of the research. Paper presented at the ASEE National Conference Proceedings, Atlanta, GA.
  9. Bloom, B. S. (1956). Taxonomy of educational objectives. Handbook I: Cognitive domain. New York: David McKay.
  10. Bonk, C. J., & Khoo, E. (2014). Adding some TEC-VARIETY: 100+ activities for motivating and retaining learners online. OpenWorldBooks.com and Amazon CreateSpace.
  11. Bonk, C. J., & Zhang, K. (2008). Empowering online learning: 100+ activities for reading, reflecting, displaying, and doing. San Francisco: Jossey-Bass.
  12. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.
  13. Day, J., & Foley, J. D. (2006). Evaluating a web lecture intervention in a human–computer interaction course. Education, IEEE Transactions on, 49(4), 420-431.
  14. Doolittle, P. E. (1995). Understanding cooperative learning through Vygotsky's zone of proximal development. Paper presented at the Lilly National Conference on Excellence in College Teaching, Columbia, SC.
  15. Ferreri, S. P., & O’Connor, S. K. (2013). Redesign of a large lecture course into a small-group learning course. American journal of pharmaceutical education, 77(1).
  16. Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613-619.
  17. Foertsch, J., Moses, G., Strikwerda, J., & Litzkow, M. (2002). Reversing the Lecture/Homework Paradigm Using eTEACH® Web‐based Streaming Video Software. Journal of Engineering Education, 91(3), 267-274.
  18. Frick, T. W., Chadha, R., Watson, C., Wang, Y., & Green, P. (2009). College student perceptions of teaching and learning quality. Educational Technology Research and Development, 57(5), 705-720.
  19. Goodwin, B., & Miller, K. (2013). Evidence on flipped classrooms is still coming in. Educational Leadership, 70(6), 78-80.
  20. Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11(3), 255-274.
  21. Hanson, W. E., Creswell, J. W., Clark, V. L. P., Petska, K. S., & Creswell, J. D. (2005). Mixed methods research designs in counseling psychology. Journal of Counseling Psychology, 52(2), 224.
  22. Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  23. Hmelo-Silver, C. E., & Barrows, H. S. (2006). Goals and strategies of a problem-based learning facilitator. Interdisciplinary Journal of Problem-based Learning, 1(1), 4.
  24. Hmelo-Silver, C. E., & Barrows, H. S. (2008). Facilitating collaborative knowledge building. Cognition and Instruction, 26(1), 48-94.
  25. Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99-107.
  26. Khan, S. (2012). The one world schoolhouse: Education reimagined. New York: Twelve.
  27. Kim, K.-J. (2009). Motivational challenges of adult learners in self-directed e-learning. Journal of Interactive Learning Research, 20(3), 317–335.
  28. Kim, K.-J., & Frick, T. W. (2011). Changes in student motivation during online learning. Journal of Educational Computing Research, 44(1), 1-23.
  29. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.
  30. Mason, G. S., Shuman, T. R., & Cook, K. E. (2013). Comparing the effectiveness of an inverted classroom to a traditional classroom in an upper-division engineering course. IEEE Transactions on Education, 56(4), 430-435.
  31. McDaniel, M. A., & Butler, A. C. (2011). A contextual framework for understanding when difficulties are desirable. Successful Remembering and Successful Forgetting: A Festschrift in Honor of Robert A. Bjork. 175-198.
  32. McDaniel, M. A., & Einstein, G. O. (2005). Material Appropriate Difficulty: A Framework for Determining When Difficulty Is Desirable for Improving Learning. In A. F. Healy (Ed.), Experimental cognitive psychology and its applications (pp. 73-85). Washington, DC: American Psychological Association.
  33. McLaughlin, J. E., Roth, M. T., Glatt, D. M., Gharkholonarehe, N., Davidson, C. A., Griffin, L. M., . . . Mumper, R. J. (2014). The flipped classroom: a course redesign to foster learning and engagement in a health professions school. Academic Medicine, 89(2), 236-243.
  34. Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43-59.
  35. Merrill, M. D., Barclay, M., & Van Schaak, A. (2008). Prescriptive principles for instructional design. Handbook of research on educational communications and technology. Lawrence Erlbaum Associates: New York. 173-186.
  36. Metcalfe, J. (2011). Desirable difficulties and studying in the Region of Proximal Learning. Successful Remembering and Successful Forgetting: A Festschrift in Honor of Robert A. Bjork. 259-276.
  37. Michael, J. (2006). Where's the evidence that active learning works? Advances in Physiology Education, 30(4), 159-167.
  38. O'Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. The Internet and Higher Education, 25, 85-95.
  39. Pluta, W. J., Richards, B. F., & Mutnick, A. (2013). PBL and beyond: Trends in collaborative learning. Teaching and Learning in Medicine, 25(sup1), S9-S16.
  40. Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93, 223-232.
  41. Prober, C. G., & Heath, C. (2012). Lecture halls without lectures—a proposal for medical education. New England Journal of Medicine, 366(18), 1657-1659.
  42. Prober, C. G., & Khan, S. (2013). Medical education reimagined: A call to action. Academic Medicine, 88(10), 1407-1410.
  43. Reigeluth, C. (2012). Instructional theory and technology for the new paradigm of education. RED, Revista de Educación a distancia, 32, 1-18.
  44. Savory, J. R., & Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational Technology, 35, 31-38.
  45. Scardamalia, M., & Bereiter, C. (2016, February 22). Knowledge Building: Theory, Pedagogy, and Technology. In K. Sawyer (Ed.). Cambridge handbook of the learning sciences (pp. 97-118): New York: Cambridge University Press.
  46. Schaffhauser, D. (2016). Faculty in no rush to adopt digital or OER curriculum. Campus Technology. Retrieved from https://campustechnology.com/articles/2016/02/22/faculty-in-no-rush-to-adopt-digital-or-oer-curriculum.aspx
  47. Strayer, J. F. (2007). The effects of the classroom flip on the learning environment: A comparison of learning activity in a traditional classroom and a flip classroom that used an intelligent tutoring system. Ohio State University.
  48. Stuart, J., & Rutherford, R. (1978). Medical student concentration during lectures. The Lancet, 312(8088), 514-516.
  49. Tobias, S., & Duffy, T. M. (2009). Constructivist instruction: Success or failure? Routledge.
  50. Tucker, B. (2012). The flipped classroom. Education Next, 12(1), 82-83.
  51. Yue, C. L., Bjork, E. L., & Bjork, R. A. (2013). Reducing verbal redundancy in multimedia learning: An undesired desirable difficulty? Journal of Educational Psychology, 105(2), 266.